Resources

Publications
S. Ofori-Ampofo, A. Zappacosta, R. S. Kuzu, P. Schauer, M. Willberg and X. X. Zhu, "SmallMinesDS: A Multimodal Dataset for Mapping Artisanal and Small-Scale Gold Mines," in IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 22, pp. 1-5, no. 2502705, 2025, https://doi.org/10.1109/LGRS.2025.3566356
A. Banze, T. Stassin, N. A. A. Braham, R. S. Kuzu, S. Besnard and M. Schmitt, "HyBiomass: Global Hyperspectral Imagery Benchmark Dataset for Evaluating Geospatial Foundation Models in Forest Aboveground Biomass Estimation," in IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 22, pp. 1-5, no. 5509405, 2025, https://doi.org/10.1109/LGRS.2025.3610178
L. Chiarabini, D. Espinoza Molina, A. Zappacosta, R. S. Kuzu, A. Camero, "Multimodal Learning for Earth Observation: Automating Satellite Image Captioning with Geo-FMs", Helmholtz AI Conference, 2025, https://elib.dlr.de/215040/
J. Jakubik, F. Yang, B. Blumenstiel, E. Scheurer, R. Sedona, S. Maurogiovanni, J. Bosmans, N. Dionelis, V. Marsocci, N. Kopp, R.Ramachandran, P. Fraccaro, T. Brunschwiler, G.Cavallaro, J. Bernabe-Moreno, N. Longépé, "TerraMind: Large-Scale Generative Multimodality for Earth Observation", in accepted in International Conference on Computer Vision (ICCV) 2025 (preprint)
B. Blumenstiel, P. Fraccaro, V. Marsocci, J. Jakubik, S. Maurogiovanni, M. Czerkawski, R. Sedona, G.Cavallaro, T. Brunschwiler, J. Bernabe-Moreno, N. Longépé, "TerraMesh: A Planetary Mosaic of Multimodal Earth Observation Data" in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2385-2393, 2025, http://doi.org/10.1109/CVPRW67362.2025.00225
J. Sadel, L. Tulczyjew, A. M. Wijata, M. Przeliorz and J. Nalepa, "Monitoring Forest Changes With Foundation Models and Sentinel-2 Time Series," in IEEE Geoscience and Remote Sensing Letters, vol. 22, pp. 1-5, no. 5001105, 2025, http://doi.org/10.1109/LGRS.2025.3556601
C. T. Marimo, B. Blumenstiel, M. Nitsche, J. Jakubik, T. Brunschwiler, "Beyond the Visible: Multispectral Vision-Language Learning for Earth Observation", in arXiv:2503.15969, 2025, https://doi.org/10.48550/arXiv.2503.15969
J. Nalepa, L. Tulczyjew, B. Le Saux, et al., "Estimating Soil Parameters From Hyperspectral Images: A Benchmark Dataset and the Outcome of the HYPERVIEW Challenge," in IEEE Geoscience and Remote Sensing Magazine, pp. 2-30, 2024, https://doi.org/10.1109/MGRS.2024.3394040